

11/19/2014 2

Lorenzo Natale

Coordination and Communication

with the YARP middleware

Humanoids 2015 workshop: A day with a humanoid robot

November 18, Madrid Spain

why is the iCub special?
• hands: we started the design from the hands

– 5 fingers, 9 degrees of freedom, 19 joints

• sensors: human-like, e.g. no lasers
– cameras, microphones, gyros, encoders, force, tactile…

• electronics: flexibility for research
– custom electronics, small, programmable (DSPs)

• reproducible platform: community designed
– reproducible & maintainable yet evolvable platform
– large software repository (~2M lines of code)

the iCub

5

price: 250K€
30 iCub
distributed since 2008
about 3-4 iCub’s/year

Applications for humanoid robotics

Programming complex behaviors

Key Issues

• Inherent complexity, distributed processing, lots of sensors,
real-time

• Asynchronous development

• Various scenarios and platforms

• Fluctuation in hardware and algorithms, lots of open
questions

• No standards

Why Yet Another Robot Platform

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

• Peer-to-peer loosely coupled components

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

• Peer-to-peer loosely coupled components

• Minimal dependencies/portable

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

• Peer-to-peer loosely coupled components

• Minimal dependencies/portable

• Interface for common hardware devices

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

• Peer-to-peer loosely coupled components

• Minimal dependencies/portable

• Interface for common hardware devices

• YCM, support for build system based on CMake

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

• Peer-to-peer loosely coupled components

• Minimal dependencies/portable

• Interface for common hardware devices

• YCM, support for build system based on CMake

• Facilitate interoperability and coordination

Why Yet Another Robot Platform
• Started ~2001 as been adopted as the iCub software

middleware

• Peer-to-peer loosely coupled components

• Minimal dependencies/portable

• Interface for common hardware devices

• YCM, support for build system based on CMake

• Facilitate interoperability and coordination

this talk

Robot Interface

• Communicating through ports becomes easily
complex

• Abstraction layers

– Separate communication details from interface
(streaming, rpc etc)

– Allows remotization

– Protect from hardware fluctuations

…

…

read encoders

read IMU

read FT

…

get image

...

set position

Control loops

R
o

bo
t

In
te

rf
ac

e

Gazebo

COMAN

iCub

Armar III

…

…

read encoders

read IMU

read FT

…

get image

...

set position

.

External loops

R
o

bo
t

In
te

rf
ac

e

…

…

read encoders

read IMU

read FT

…

get image

...

set position

Internal Loops

Network

N
et

w
o

rk
 S

tu
b

N
et

w
o

rk
 S

tu
b R
o

bo
t

In
te

rf
ac

e

Robot

Type of interfaces

• Motor control (position,
velocity, open-loop,
torque, impedance)

• Sensors: IMU, cameras,
torques, F/T, encoders,
skin

• Devices can also be virtual

…more on this later this morning

YCM distributed development

• Development is distributed in small repositories
• Libraries and modules are agglomerated in large

builds
• Share code not binaries
• Mixed software management tools (GIT, svn, …)

• Built on top of CMake (several patches
contributed upstream)

YARP
stereo-vision
speech

github.com

foo-project.org

ml-libraries
grasping-lib
slam

FooProject

foo-project
download_and_compile(yarp)
download_and_compile(speech)
download_and_compile(ml-libraries)
download_and_compile(grasping-lib)
download_and_compile(slam)
…

YARP
stereo-vision
speech

github.com

foo-project.org

ml-libraries
grasping-lib
slam

FooProject

foo-project
download_and_compile(yarp)
download_and_compile(speech)
download_and_compile(ml-libraries)
download_and_compile(grasping-lib)
download_and_compile(slam)
…

YARP
stereo-vision
speech

github.com

foo-project.org

ml-libraries
grasping-lib
slam

FooProject Issue & Bug Tracking
Documentation
Continuous integration
Better visibility

Easier deployment
Documentation
Continuous Integration

foo-project
download_and_compile(yarp)
download_and_compile(speech)
download_and_compile(ml-libraries)
download_and_compile(grasping-lib)
download_and_compile(slam)
…

YARP
stereo-vision
speech

github.com

foo-project.org

ml-libraries
grasping-lib
slam

FooProject Issue & Bug Tracking
Documentation
Continuous integration
Better visibility

Easier deployment
Documentation
Continuous Integration

bar-project
download_and_compile(yarp)
download_and_compile(fancy-vision)
download_and_compile(fancy-speech)
download_and_compile(slam)
…

foo-project
download_and_compile(yarp)
download_and_compile(speech)
download_and_compile(ml-libraries)
download_and_compile(grasping-lib)
download_and_compile(slam)
…

YARP
stereo-vision
speech

github.com

foo-project.org

ml-libraries
grasping-lib
slam

FooProject Issue & Bug Tracking
Documentation
Continuous integration
Better visibility

Easier deployment
Documentation
Continuous Integration

bar-project
download_and_compile(yarp)
download_and_compile(fancy-vision)
download_and_compile(fancy-speech)
download_and_compile(slam)
…

bar-project.org

fancy-vision
fancy-speech

BarProject

Communication

• Peer-to-peer

Communication

...

...

...

...

C3

C1

...

...

...

...

...

...

C4

...

udp

mcast

C2

mcast

tcp

• Peer-to-peer

• Dynamic topology (can also be
statically defined)

Communication

...

...

...

...

C3

C1

...

...

...

...

...

...

C4

...

udp

mcast

C2

mcast

tcp

• Peer-to-peer

• Dynamic topology (can also be
statically defined)

• Loosely typed, but IDL
language can specify types and
interfaces

Communication

...

...

...

...

C3

C1

...

...

...

...

...

...

C4

...

udp

mcast

C2

mcast

tcp

• Peer-to-peer

• Dynamic topology (can also be
statically defined)

• Loosely typed, but IDL
language can specify types and
interfaces

• Carriers: protocols can be
extended as plugins and
configured at runtime

Communication

...

...

...

...

C3

C1

...

...

...

...

...

...

C4

...

udp

mcast

C2

??

...

...

...

??

mcast

tcp

YARP plugins

• YARP includes a plugin system for drivers and
protocols (carriers)

• Interchangeable carriers allow:
– interfacing existing software with ports (without bridges)

– change significantly port behavior

• Examples:
– mjpeg, xml rpc, ROS, …

– Bayer carrier, port-monitor

Examples

Examples

yarp connect /65.52.88.202:5159 /receiver mjpeg

MJPG camera

http://65.52.88.202:5159
receiver

Y
A

R
P

Examples

Bayer Camera
/camera receiver

Y
A

R
P

yarp connect /camera /receiver rec.bayer

yarp connect /65.52.88.202:5159 /receiver mjpeg

MJPG camera

http://65.52.88.202:5159
receiver

Y
A

R
P

Examples

Bayer Camera
/camera receiver

Y
A

R
P

yarp connect /camera /receiver rec.bayer

yarp connect /65.52.88.202:5159 /receiver mjpeg

Camera.msg

yarp connect /image@/camera /receiver

MJPG camera

http://65.52.88.202:5159

ROS
Node: /camera
Topic: /image

receiver

Y
A

R
P

receiver
Y

A
R

P

More on YARP-ROS

• Type server providing type information at
runtime (YARP-ROS without ROS)

• Compatibility with ROS nameserver

• Concept of nodes

• Type and direction information within ports

• Check-out www.yarp.it � YARP with ROS

Coordinating modules

A simple example

Track a face if and only the confidence level (certainty) of the Face Detector is above a
desired threshold.

• Simple scenario poses questions on the design of the components

• Some functionalities are application dependent

• Should we:

– extend Head Control, Face Detector?

– Add a a separate filtering module?

Port monitor plug-in

The port monitor approach:

• Add code that handles outgoing (or incoming) data

• Dynamically loading or configuring a run-time script (e.g. Lua)

• Monitoring, filtering, and transforming….

Track a face if and only the
confidence level (certainty) of the
Face Detector is above a desired
threshold (e.g. 80%).

if (data.certainty > 0.9)
accept(data)

else
drop(data)

Application
configuration
(not compile
time)

Port arbitration using plug-ins

Example:

• Search and Track a face

Requirements:

• Monitoring the confidence level of Face Detector

• Arbitrating the connections

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

Potential applications

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

Arbitration

Online tutorials: www.yarp.it � Port monitoring and arbitration

Potential applications

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

if (check(C1)
dispatch(event)

Arbitration

Monitoring data and generating events
for coordinator

Online tutorials: www.yarp.it � Port monitoring and arbitration

Potential applications

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

if (check(C1)
dispatch(event)

C1=filter(C1)

Arbitration

Monitoring data and generating events
for coordinator

Filtering and data transformation

Online tutorials: www.yarp.it � Port monitoring and arbitration

Potential applications

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

if (check(C1)
dispatch(event)

C1=filter(C1)

dispatch(C1)

Arbitration

Monitoring data and generating events
for coordinator

Filtering and data transformation

Logging

Online tutorials: www.yarp.it � Port monitoring and arbitration

Potential applications

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

if (check(C1)
dispatch(event)

C1=filter(C1)

dispatch(C1)

If (C1)
T1=getTime()

Arbitration

Monitoring data and generating events
for coordinator

Filtering and data transformation

Logging

Monitoring connections, delays, QoS

Online tutorials: www.yarp.it � Port monitoring and arbitration

Table-cleaning application
• Completely built using modules from the iCub repository

• No modifications to the existing modules

• Extending the required functionalities (e.g., for coordination) using port
plug-ins

A. Paikan, V. Tikhanoff, G. Metta and L. Natale, IROS 2014

Acknowledgements

Giorgio Metta
Ali Paikan
Daniele Domenichelli
Alberto Cardellino
Vadim Tikhanoff
Ugo Pattacini
Marco Randazzo
Paul Fitzpatrick

