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why is the iCub special?
• hands: we started the design from the hands

– 5 fingers, 9 degrees of freedom, 19 joints

• sensors: human-like, e.g. no lasers
– cameras, microphones, gyros, encoders, force, tactile…

• electronics: flexibility for research
– custom electronics, small, programmable (DSPs)

• reproducible platform: community designed
– reproducible & maintainable yet evolvable platform 
– large software repository (~2M lines of code)



the iCub

5

price: 250K€
30 iCub
distributed since 2008
about 3-4 iCub’s/year





Applications for humanoid robotics



Programming complex behaviors



Key Issues

• Inherent complexity, distributed processing, lots of sensors, 
real-time

• Asynchronous development

• Various scenarios and platforms

• Fluctuation in hardware and algorithms, lots of open
questions

• No standards
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this talk



Robot Interface

• Communicating through ports becomes easily 
complex

• Abstraction layers

– Separate communication details from interface 
(streaming, rpc etc)

– Allows remotization

– Protect from hardware fluctuations
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Type of interfaces

• Motor control (position, 
velocity, open-loop, 
torque, impedance)

• Sensors: IMU, cameras, 
torques, F/T, encoders, 
skin

• Devices can also be virtual



…more on this later this morning



YCM distributed development

• Development is distributed in small repositories
• Libraries and modules are agglomerated in large 

builds
• Share code not binaries
• Mixed software management tools (GIT, svn, …)

• Built on top of CMake (several patches 
contributed upstream)
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• Peer-to-peer

• Dynamic topology (can also be 
statically defined)

• Loosely typed, but IDL 
language can specify types and 
interfaces

• Carriers: protocols can be 
extended as plugins and 
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YARP plugins

• YARP includes a plugin system for drivers and 
protocols (carriers)

• Interchangeable carriers allow:
– interfacing existing software with ports (without bridges)

– change significantly port behavior

• Examples: 
– mjpeg, xml rpc, ROS, …

– Bayer carrier, port-monitor
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yarp connect  /camera  /receiver  rec.bayer

yarp connect  /65.52.88.202:5159  /receiver  mjpeg

Camera.msg
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More on YARP-ROS

• Type server providing type information at 
runtime (YARP-ROS without ROS)

• Compatibility with ROS nameserver

• Concept of nodes

• Type and direction information within ports

• Check-out www.yarp.it � YARP with ROS



Coordinating modules



A simple example

Track a face if and only the confidence level (certainty) of the Face Detector is above a 
desired threshold.

• Simple scenario poses questions on the design of the components

• Some functionalities are application dependent

• Should we:

– extend Head Control, Face Detector?

– Add a a separate filtering module?



Port monitor plug-in

The port monitor approach:

• Add code that handles outgoing (or incoming) data

• Dynamically loading or configuring a run-time script (e.g. Lua)

• Monitoring, filtering, and transforming….



Track a face if and only the 
confidence level (certainty) of the 
Face Detector is above a desired 
threshold (e.g. 80%).

if (data.certainty > 0.9)
accept(data)

else
drop(data)

Application 
configuration 
(not compile 
time)



Port arbitration using plug-ins

Example:  

• Search and Track a face

Requirements:

• Monitoring the confidence level of Face Detector

• Arbitrating the connections

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)



Potential applications
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Potential applications

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

if (check(C1)
dispatch(event)

C1=filter(C1)

dispatch(C1)

If (C1)
T1=getTime()

Arbitration

Monitoring data and generating events 
for coordinator

Filtering and data transformation

Logging

Monitoring connections, delays, QoS

Online tutorials: www.yarp.it � Port monitoring and arbitration



Table-cleaning application
• Completely built using modules from the iCub repository

• No modifications to the existing modules

• Extending the required functionalities (e.g., for coordination) using port 
plug-ins
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